2.2 The OSI Reference Model
2.2.3 The functions of each layer
Instructor Note
  The purpose of this target indicator is to make more tangible what each layer does. Note that the entire structure of Semester 1 is based on deepening the student's understanding of each layer, but it does not hurt to start things off with a simple understanding of the function of each layer.

This TI relates to CCNA Certification Exam Objective # 1.

Each individual OSI layer has a set of functions that it must perform in order for data packets to travel from a source to a destination on a network. Below is a brief description of each layer in the OSI reference model as shown in the Figure.

Layer 7: The Application Layer
The application layer is the OSI layer that is closest to the user; it provides network services to the user’s applications. It differs from the other layers in that it does not provide services to any other OSI layer, but rather, only to applications outside the OSI model. Examples of such applications are spreadsheet programs, word processing programs, and bank terminal programs. The application layer establishes the availability of intended communication partners, synchronizes and establishes agreement on procedures for error recovery and control of data integrity. If you want to remember Layer 7 in as few words as possible, think of browsers.

Layer 6: The Presentation Layer
The presentation layer ensures that the information that the application layer of one system sends out is readable by the application layer of another system. If necessary, the presentation layer translates between multiple data formats by using a common format. If you want to think of Layer 6 in as few words as possible, think of a common data format.

Layer 5: The Session Layer
As its name implies, the session layer establishes, manages, and terminates sessions between two communicating hosts. The session layer provides its services to the presentation layer. It also synchronizes dialogue between the two hosts' presentation layers and manages their data exchange. In addition to session regulation, the session layer offers provisions for efficient data transfer, class of service, and exception reporting of session layer, presentation layer, and application layer problems. If you want to remember Layer 5 in as few words as possible, think of dialogues and conversations.

Layer 4: The Transport Layer
The transport layer segments data from the sending host's system and reassembles the data into a data stream on the receiving host's system. The boundary between the transport layer and the session layer can be thought of as the boundary between application protocols and data-flow protocols. Whereas the application, presentation, and session layers are concerned with application issues, the lower four layers are concerned with data transport issues.

The transport layer attempts to provide a data transport service that shields the upper layers from transport implementation details. Specifically, issues such as how reliable transport between two hosts is accomplished is the concern of the transport layer. In providing communication service, the transport layer establishes, maintains, and properly terminates virtual circuits. In providing reliable service, transport error detection-and-recovery and information flow control are used. If you want to remember Layer 4 in as few words as possible, think of quality of service, and reliability.

Layer 3: The Network Layer
The network layer is a complex layer that provides connectivity and path selection between two host systems that may be located on geographically separated networks. If you want to remember Layer 3 in as few words as possible, think of path selection, routing, and addressing.

Layer 2: The Data Link Layer
The data link layer provides reliable transit of data across a physical link. In so doing, the data link layer is concerned with physical (as opposed to logical) addressing, network topology, network access, error notification, ordered delivery of frames, and flow control. If you want to remember Layer 2 in as few words as possible, think of frames and media access control.

Layer 1: The Physical Layer
The physical layer defines the electrical, mechanical, procedural, and functional specifications for activating, maintaining, and deactivating the physical link between end systems. Such characteristics as voltage levels, timing of voltage changes, physical data rates, maximum transmission distances, physical connectors, and other, similar, attributes are defined by physical layer specifications. If you want to remember Layer 1 in as few words as possible, think of signals and media.

icon2.gif (1232 bytes) Web Links
The OSI Seven Layers Model